Comparing Usability of Matching Techniques for Normalising Biomedical Named Entities

نویسندگان

  • Xinglong Wang
  • Michael Matthews
چکیده

String matching plays an important role in biomedical Term Normalisation, the task of linking mentions of biomedical entities to identifiers in reference databases. This paper evaluates exact, rule-based and various string-similarity-based matching techniques. The matchers are compared in two ways: first, we measure precision and recall against a gold-standard dataset and second, we integrate the matchers into a curation tool and measure gains in curation speed when they were used to assist a curator in normalising protein and tissue entities. The evaluation shows that a rule-based matcher works better on the gold-standard data, while a string-similarity based system and exact string matcher win out on improving curation efficiency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating Embedded Question Reuse in Question Answering

The investigation presented in this paper is a novel method in question answering (QA) that enables a QA system to gain performance through reuse of information in the answer to one question to answer another related question. Our analysis shows that a pair of question in a general open domain QA can have embedding relation through their mentions of noun phrase expressions. We present methods f...

متن کامل

BANNER: An Executable Survey of Advances in Biomedical Named Entity Recognition

There has been an increasing amount of research on biomedical named entity recognition, the most basic text extraction problem, resulting in significant progress by different research teams around the world. This has created a need for a freely-available, open source system implementing the advances described in the literature. In this paper we present BANNER, an open-source, executable survey ...

متن کامل

Recognising Nested Named Entities in Biomedical Text

Although recent named entity (NE) annotation efforts involve the markup of nested entities, there has been limited focus on recognising such nested structures. This paper introduces and compares three techniques for modelling and recognising nested entities by means of a conventional sequence tagger. The methods are tested and evaluated on two biomedical data sets that contain entity nesting. A...

متن کامل

Corefrence resolution with deep learning in the Persian Labnguage

Coreference resolution is an advanced issue in natural language processing. Nowadays, due to the extension of social networks, TV channels, news agencies, the Internet, etc. in human life, reading all the contents, analyzing them, and finding a relation between them require time and cost. In the present era, text analysis is performed using various natural language processing techniques, one ...

متن کامل

SIBM at CLEF e-Health Evaluation Lab 2015

In this paper, we report on our participation in the clinical named entity recognition task of the CLEF eHealth 2015 evaluation initiative i.e. to fully automatically identify clinically relevant entities in medical text in French. We address the task by using several biomedical knowledge organization systems (KOS) containing terms and their variations already in French or that we have partiall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing

دوره   شماره 

صفحات  -

تاریخ انتشار 2008